Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 3, 2026
-
Free, publicly-accessible full text available May 22, 2026
-
Metal-ion-containing soft materials include metallogels, metal-organic frameworks, and coordination polymers. These materials show commercial value in catalysis, hydrogen storage, and electronics. Metal-containing soft materials reported to date are structurally weak, falling short of a Young’s modulus typical of engineering-grade materials. We report herein that inclusion of an antisolvent in metal-thiolate metallogel synthesis results in a colloidal sol, where the colloids comprise amorphous metal-organic complexes. Upon desolvation, the colloids coalesce to form a solid phase that is both gel like and glass like. This solid phase is structurally amorphous, comprises continuous networks similar to organic polymers, and has stiffness observed in polymeric materials with extended structure, yet contains a superstoichiometric amount of metal relative to organic ligand. The solid phase is therefore a rigid, amorphous metal-rich (RAMETRIC) material. Highlighting the rigidity, the Young’s modulus of the gel-phase material is 1,000× greater than metallogels comprised of the same constituent building blocks.more » « less
-
The synthesis and characterization of an Au 20 (PET) 15 (DG) 2 (PET = phenylethane thiol; DG = diglyme) cluster is reported. Mass spectrometry reveals this as the first diglyme ligated cluster where diglyme ligands survive ionization into the gas phase. Thermal analysis shows the cluster degrades at 156 °C, whereas the similar Au 20 (PET) 16 cluster degrades at 125 °C, representing markedly increased thermal stability. A combination of NMR spectroscopy and computational modeling suggests that the diglyme molecules bind in a tridentate manner for this cluster, resulting in a binding energy of 35.2 kcal mol −1 for diglyme, which is comparable to the value of ∼40 kcal mol −1 for thiolates. IR and optical spectroscopies show no evidence of assembly of this cluster, in contrast to Au 20 (PET) 15 (DG), which readily assembles into dimeric species, which is consistent with a tridentate binding motif. Evidence for stacking among Au-bound and non-bound diglyme molecules is inferred from thermal and mass analysis.more » « less
An official website of the United States government
